技术文章

MCE | 组蛋白甲基化

发布时间:2021/8/14 12:28:59 阅读人数:653

组蛋白甲基化通常发生在 H3 和 H4 的精氨酸 (Arg 或 R) 和赖氨酸 (Lys 或 K) 残基上。这些精氨酸和赖氨酸都可以被单甲基化或二甲基化,赖氨酸还能再被三甲基化。组蛋白的甲基化修饰受到组蛋白甲基转移酶 (HMTs) 组蛋白脱甲基化酶 (HDMs) 调控。但与乙酰化修饰的生物学效应不同,甲基化后组蛋白赖氨酸残基可以激活或抑制基因转录,这取决于具体的情况 (如甲基化的位点,状态等),例如 H3K4me2/3, H3K36me1/3, H3K79me1/2 和 H4K20me1 与转录激活相关,而 H3K9me2/3, H3K27me2/3, H3K79me3 和 H4K20me3 与转录抑制相关。

HMTs 和 HDMs 调节基因表达的实例

 

写入: 组蛋白甲基转移酶 (HMTs)

组蛋白甲基转移酶 (HMTs) 分为两类:赖氨酸甲基转移酶 (KMTs) 精氨酸甲基转移酶 (PRMTs)

KMTs 根据催化结构域序列,可分为含 SET 结构域和非 SET 结构域。SET 结构域是组蛋白甲基转移酶的重要结构域,也是大多数转移酶含有的结构域,负责甲基转移酶的酶促活性,包括 SUV39, SET1, SET2, EZH ( EZH2 就在这个家族啦, 可对 H3K27 进行单,二和三甲基化),RIZ (PRDM, SMYD, SUV420) 等家族。而不含 SET 结构域的蛋白较少,如 DOT1L 蛋白。DOT1L 是已知的靶向组蛋白 H3K79 位置的组蛋白甲基转移酶。H3K79 位于组蛋白 H3 的球状结构域中,但它暴露在核小体表面上,在这里它可以被 DOT1L 甲基化。因此,DOT1L 的催化发生在核小体表面而不是 N 末端尾巴上。

PRMTs 根据其催化活性可分为三类,催化精氨酸的单甲基化 (MMA)不对称 (ADMA) 或对称二甲基化 (SDMA)。I 型 PRMTs (PRMT1, PRMT2, PRMT3, PRMT4, PRMT6 和 PRMT8) 产生单或不对称二甲基化精氨酸 (ADMA),II 型 PRMTs (PRMT5 和 PRMT9) 产生单或对称二甲基化精氨酸 (SDMA)。而 Ⅲ 型的 PRMT7,只产生 MMA。
组蛋白甲基化转移酶的成员实在不少,并有各自的识别位点,就列在树上给小伙伴们看吧。

蛋白甲基转移酶的系统发育树

擦除: 组蛋白脱甲基酶 (HDMs)
组蛋白去甲基化酶与转移酶的作用相反。组蛋白去甲基酶既能靶向组蛋白又能靶向非组蛋白底物。目前已经鉴定出两个进化上保守的组蛋白去甲基化酶家族:赖氨酸特异性去甲基化酶 (LSD)Jumonji C (JMJC) 蛋白家族,它们利用不同的反应机理来去甲基。 
LSD 蛋白家族由 LSD1 和 LSD2 组成,它们通过 FAD 依赖的胺氧化反应 (flavin adenine dinucleotide-dependent amineoxidase) 对单和二甲基化的赖氨酸残基进行脱甲基化。其中 LSD1 (KDM1A) 是组蛋白赖氨酸脱甲基酶 (KDM), 催化 H3K4me1/2, H3K9me1/2 的脱甲基化,另外,LSD1 也可以对非组蛋白脱甲基化,如 p53 上的 K370me1 和 K370me2, DNMT1 上的 Lys1096 和 E2F1 上的 Lys185。

LSD1 作为转录阻遏物和激活物
LSD1 对 p53 活性的调节
而 JMJC 家族催化的脱甲基酶反应是一种依赖于铁 (II) 和 α-酮戊二酸的双加氧酶 (Fe(II)/α-ketoglutarate-dependent hydroxylase) 反应。这使得 JMJC 家族的酶与 LSD 家族不同,能够脱三甲基赖氨酸残基。JMJC 家族由 30 个成员组成,目前为止,这些成员中的 18 个已显示具有组蛋白脱甲基酶活性。因为组蛋白脱甲基化酶的成员也实在不少,就不一一列举了,小伙伴们可以参考这个表。

组蛋白去甲基化酶家族[6]
读取:组蛋白甲基化的识别蛋白
甲基化组蛋白的识别是通过具有甲基结合域的蛋白来实现的,这些结合域包括 ADD, Ankyrin, BAH, Chromobarrel, Chromodomain, Double Chromodomain (DCD), MBT, PHD, PWWP, TTD, Tudor, WD40 以及 zf-CW。其中含 Chromodomain, MBT 重复序列,PWWP, Tudor, DCD 蛋白组成了 Royal 超家族。
些域是怎么识别组蛋白甲基化位点呢?许多研究表明,含 Chromodomain 蛋白的 HP1 和 Chd1,分别可以识别 H3K9me 和 H3K27me。而人的 L3MBTL1 蛋白,是已知的转录阻遏物,以严格依赖组蛋白甲基化标记的方式 (如 H4K20me1/2 和 H1K26me1/2) 压紧染色质。L3MBTL1 含有三个 MBT 域,都很重要。例如它的第二个 MBT 结构域对 H1K26me1/2 和 H4K20me1/2 的结合很重要。含有 PHD 手指基序的 BPTF, RAG2, PYGO 和 ING2 都可以识别并结合到 H3K4me3。另外,含 WD40 重复序列的蛋白如 WDR5,可通过与 MLL, RBBP5, ASH2L 和 DPY30 形成蛋白质复合物,促进组蛋白 H3K4 甲基化。

组蛋白甲基化阅读器 (注: PTM: 蛋白翻译后修饰)[10]

如同武林高手组合出招一样,组蛋白甲基化的不同位点和模式可以演化出很多的甲基化修饰模式,增加了受组蛋白甲基化调节的基因表达的复杂性和多样性。而 HMTs 和 HDMs 小心地维持着组蛋白甲基化的水平,因而也就不难理解它们的失调与癌症之间密切的关系,如组蛋白甲基转移酶 NSD1 和 EZH2 在许多肿瘤中过表达,DOT1L 在白血病中有着广泛的作用等等。组蛋白脱甲基酶 KDM1A, KDM5B 分别在低分化神经母细胞瘤和前列腺癌中过表达。LSD1 与 p53 的直接相互作用会降低 p53 的活性,包括 p21 的表达降低,与肿瘤发生有关等等。另外,对组蛋白甲基化标记的误读 (组蛋白甲基化的读取蛋白活性异常) 也与许多人类疾病有关,包括发育异常以及癌症。因此,这些蛋白质的小分子抑制剂是有用的化学探针或潜在的治疗剂。 

部分靶向组蛋白甲基化修饰的蛋白抑制剂

化合物 作用
HMTs
Tazemetostat
选择性,具有口服活性的 EZH2 抑制剂,用于治疗上皮样肉瘤;抑制含有 PRC2 复合体的野生型 EZH2 的活性; 
FDA Approved
GSK126
有效的,选择性的 EZH2 甲基转移酶抑制剂;在体内外明显抑制肿瘤形成,降低细胞迁移,侵袭,逆转耐药
AZ505
有效的,具有选择性的 SMYD2 抑制剂
Pinometostat
有效的 DOT1L 组蛋白甲基转移酶抑制剂; Phase 2
EPZ015666
有口服活性的 PRMT5 抑制剂
MS023
有效的,选择性的,具有细胞活性的人 I 型蛋白精氨酸甲基转移酶 (PRMTs) 抑制剂
HDMs
GSK-J4
有效的 H3K27me3/me2 脱甲基化酶 JMJD3/KDM6B 和 UTX/KDM6A 双抑制剂
GSK2879552
具有口服活性的,不可逆的 LSD1 抑制剂,具有抗肿瘤活性; Phase 1
Seclidemstat
有效的 LSD1 抑制剂; Phase 1
JIB-04
Jumonji 组蛋白脱甲基酶广谱抑制剂
Reader
UNC 669
L3MBTL1L3MBTL3 的抑制剂

MCE 的所有产品仅用作科学研究,我们不为任何个人用途提供产品和服务

HY-L005 表观遗传化合物库 Epigenetics Compound Library
缩写:
HMTs: histone methyltransferases
HDMs: histone demethylases

PHD: plant homeodomain

PRMTs: protein arginine methyltransferase

KMTs: histone lysine methyltransferases

DOT1L: Dot1-Like histone methyltransferase

MMA: monomethylarginine

ADMA: asymmetric dimethylarginine

SDMA: symmetric dimethylation

LSD: lysine-specific histone demethylase

KDM: histone lysine demethylases

HP1: heterochromatin protein 1

参考文献 

 下滑查看更多文献 

1. Cheng Y, et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2019 Dec 17;4:62. 

2. Jambhekar A, et al. Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol. 2019 Oct;20(10):625-641.

3. Xin Yi, et al. Histone methyltransferases: novel targets for tumor and developmental defects. Am J Transl Res. 2015 Nov 15;7(11):2159-75.

4. Tian X, et al. Histone lysine-specific methyltransferases and demethylases in carcinogenesis: new targets for cancer therapy and prevention. Curr Cancer Drug Targets. 2013 Jun;13(5):558-79.

5. Michalak EM, et al. s of DNA, RNA and histone methylation in ageing and cancer. Nat Rev Mol Cell Biol. 2019 Oct;20(10):573-589.

6. Kooistra SM, et. Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol. 2012 Apr 4;13(5):297-311.

7. Milite C, et al. The emerging role of lysine methyltransferase SETD8 in human diseases. Clin Epigenetics. 2016 Sep 22;8:102.

8. Islam AB, et al. Co-regulation of histone-modifying enzymes in cancer. PLoS One. 2011;6(8):e24023.

9. Huang J, et al. p53 is regulated by the lysine demethylase LSD1. Nature. 2007 Sep 6;449(7158):105-8.

10. Musselman CA, et al. Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol. 2012 Dec;19(12):1218-27.

11. Zhu H, et al. Molecules. 2020 Jan 29;25(3). pii: E578.Small Molecules Targeting the Specific Domains of Histone-Mark Readers in Cancer Therapy.

12. Albert M, et al. Histone methyltransferases in cancer. Semin Cell Dev Biol. 2010 Apr;21(2):209-20. 

13. D'Oto A, et al. Histone demethylases and their roles in cancer epigenetics. J Med Oncol Ther. 2016;1(2):34-40.

14. Arrowsmith CH, et al. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov. 2012 Apr 13;11(5):384-400.

15. McCabe MT, et al. Targeting Histone Methylation in Cancer. Cancer J. 2017 Sep/Oct;23(5):292-301.

16. Magliulo D, et al. Lysine-Specific Demethylase 1A as a Promising Target in Acute Myeloid Leukemia.Front Oncol. 2018 Jul 19;8:255.

原创作者:MedChemExpress

相关产品

联系我们

电话:021-58955995
传真:021-53700325
邮箱:sales@medchemexpress.cn
地址:上海上海

版权所有©MedChemExpress, All Right Reseverd ICP备案号: 总访问量:11051504 管理登录 阿仪网 设计制作,未经允许翻录必究

8

阿仪网推荐收藏该企业网站

联系方式

18019480960
18019480960

工作时间

(24小时)