发布时间:2021/8/14 12:28:59 阅读人数:653
HMTs 和 HDMs 调节基因表达的实例
组蛋白甲基转移酶 (HMTs) 分为两类:赖氨酸甲基转移酶 (KMTs) 和精氨酸甲基转移酶 (PRMTs)。
KMTs 根据催化结构域序列,可分为含 SET 结构域和非 SET 结构域。SET 结构域是组蛋白甲基转移酶的重要结构域,也是大多数转移酶含有的结构域,负责甲基转移酶的酶促活性,包括 SUV39, SET1, SET2, EZH ( EZH2 就在这个家族啦, 可对 H3K27 进行单,二和三甲基化),RIZ (PRDM, SMYD, SUV420) 等家族。而不含 SET 结构域的蛋白较少,如 DOT1L 蛋白。DOT1L 是已知的靶向组蛋白 H3K79 位置的组蛋白甲基转移酶。H3K79 位于组蛋白 H3 的球状结构域中,但它暴露在核小体表面上,在这里它可以被 DOT1L 甲基化。因此,DOT1L 的催化发生在核小体表面而不是 N 末端尾巴上。
蛋白甲基转移酶的系统发育树
组蛋白甲基化阅读器 (注: PTM: 蛋白翻译后修饰)[10]
如同武林高手组合出招一样,组蛋白甲基化的不同位点和模式可以演化出很多的甲基化修饰模式,增加了受组蛋白甲基化调节的基因表达的复杂性和多样性。而 HMTs 和 HDMs 小心地维持着组蛋白甲基化的水平,因而也就不难理解它们的失调与癌症之间密切的关系,如组蛋白甲基转移酶 NSD1 和 EZH2 在许多肿瘤中过表达,DOT1L 在白血病中有着广泛的作用等等。组蛋白脱甲基酶 KDM1A, KDM5B 分别在低分化神经母细胞瘤和前列腺癌中过表达。LSD1 与 p53 的直接相互作用会降低 p53 的活性,包括 p21 的表达降低,与肿瘤发生有关等等。另外,对组蛋白甲基化标记的误读 (组蛋白甲基化的读取蛋白活性异常) 也与许多人类疾病有关,包括发育异常以及癌症。因此,这些蛋白质的小分子抑制剂是有用的化学探针或潜在的治疗剂。
化合物 | 作用 |
HMTs | |
Tazemetostat | |
GSK126 | |
AZ505 | |
Pinometostat | |
EPZ015666 | |
MS023 | |
HDMs | |
GSK-J4 | |
GSK2879552 | |
Seclidemstat | |
JIB-04 | |
Reader | |
UNC 669 |
MCE 的所有产品仅用作科学研究,我们不为任何个人用途提供产品和服务
PHD: plant homeodomain
PRMTs: protein arginine methyltransferase
KMTs: histone lysine methyltransferases
DOT1L: Dot1-Like histone methyltransferase
MMA: monomethylarginine
ADMA: asymmetric dimethylarginine
SDMA: symmetric dimethylation
LSD: lysine-specific histone demethylase
KDM: histone lysine demethylases
HP1: heterochromatin protein 1
参考文献
↓ 下滑查看更多文献
1. Cheng Y, et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2019 Dec 17;4:62.
2. Jambhekar A, et al. Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol. 2019 Oct;20(10):625-641.
3. Xin Yi, et al. Histone methyltransferases: novel targets for tumor and developmental defects. Am J Transl Res. 2015 Nov 15;7(11):2159-75.
4. Tian X, et al. Histone lysine-specific methyltransferases and demethylases in carcinogenesis: new targets for cancer therapy and prevention. Curr Cancer Drug Targets. 2013 Jun;13(5):558-79.
5. Michalak EM, et al. s of DNA, RNA and histone methylation in ageing and cancer. Nat Rev Mol Cell Biol. 2019 Oct;20(10):573-589.
6. Kooistra SM, et. Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol. 2012 Apr 4;13(5):297-311.
7. Milite C, et al. The emerging role of lysine methyltransferase SETD8 in human diseases. Clin Epigenetics. 2016 Sep 22;8:102.
8. Islam AB, et al. Co-regulation of histone-modifying enzymes in cancer. PLoS One. 2011;6(8):e24023.
9. Huang J, et al. p53 is regulated by the lysine demethylase LSD1. Nature. 2007 Sep 6;449(7158):105-8.
10. Musselman CA, et al. Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol. 2012 Dec;19(12):1218-27.
11. Zhu H, et al. Molecules. 2020 Jan 29;25(3). pii: E578.Small Molecules Targeting the Specific Domains of Histone-Mark Readers in Cancer Therapy.
12. Albert M, et al. Histone methyltransferases in cancer. Semin Cell Dev Biol. 2010 Apr;21(2):209-20.
13. D'Oto A, et al. Histone demethylases and their roles in cancer epigenetics. J Med Oncol Ther. 2016;1(2):34-40.
14. Arrowsmith CH, et al. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov. 2012 Apr 13;11(5):384-400.
15. McCabe MT, et al. Targeting Histone Methylation in Cancer. Cancer J. 2017 Sep/Oct;23(5):292-301.
16. Magliulo D, et al. Lysine-Specific Demethylase 1A as a Promising Target in Acute Myeloid Leukemia.Front Oncol. 2018 Jul 19;8:255.
原创作者:MedChemExpress
相关产品